COLLAGE-BASED INVERSE PROBLEMS FOR IFSM WITH ENTROPY MAXIMIZATION AND SPARSITY CONSTRAINTS
نویسندگان
چکیده
منابع مشابه
Domain Decomposition Methods for Linear Inverse Problems with Sparsity Constraints
Quantities of interest appearing in concrete applications often possess sparse expansions with respect to a preassigned frame. Recently, there were introduced sparsity measures which are typically constructed on the basis of weighted l1 norms of frame coefficients. One can model the reconstruction of a sparse vector from noisy linear measurements as the minimization of the functional defined by...
متن کاملLinear Inverse Problems with Norm and Sparsity Constraints
We describe two nonconventional algorithms for linear regression, called GAME and CLASH. The salient characteristics of these approaches is that they exploit the convex `1-ball and non-convex `0-sparsity constraints jointly in sparse recovery. To establish the theoretical approximation guarantees of GAME and CLASH, we cover an interesting range of topics from game theory, convex and combinatori...
متن کاملsparsity-based denoising and its application in linear inverse problems
generally, the presence of noise in geophysical measurements is inevitable and depending on the type and the level it affects the results of geophysical studies. so, denoising is an important part of the processing of geophysical data. on the other hand, geophysicists make inferences about the physical properties of the earth interior based on the indirect measurements (data) collected at or ne...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Trading Accuracy for Sparsity in Optimization Problems with Sparsity Constraints
We study the problem of minimizing the expected loss of a linear predictor while constraining its sparsity, i.e., bounding the number of features used by the predictor. While the resulting optimization problem is generally NP-hard, several approximation algorithms are considered. We analyze the performance of these algorithms, focusing on the characterization of the trade-off between accuracy a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Image Analysis & Stereology
سال: 2013
ISSN: 1854-5165,1580-3139
DOI: 10.5566/ias.v32.p183-188